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Abstract

A three-step climate classification was applied to a spatial domain covering the Hi-
malayan arc and adjacent plains regions using input data from four global meteoro-
logical reanalyses. Input variables were selected based on an understanding of the
climatic drivers of regional water resource variability and crop yields. Principal compo-5

nents analysis (PCA) of those variables and k means clustering on the PCA outputs
revealed a reanalysis ensemble consensus for eight sub-regional climate zones. Spa-
tial statistics of input variables for each zone revealed consistent, distinct climatologies.
This climate classification approach has potential both for enhancing assessment of cli-
matic influences on water resources and food security as well as for characterising the10

skill and bias of gridded datasets, both meteorological reanalyses and climate models,
for reproducing sub-regional climatologies. Through their spatial descriptors (area, ge-
ographic centroid, elevation mean range), climate classifications also provide metrics,
beyond simple changes in individual variables, with which to assess the magnitude
of projected climate change. Such sophisticated metrics are of particular interest for15

regions, including mountainous areas, where natural and anthropogenic systems are
expected to be sensitive to incremental climate shifts.

1 Introduction

The first objective, quantitative systems for global climate classification were developed
in the early 20th century by integrating climate data to delineate zones of coherent20

vegetation type or eco-region (Belda et al., 2014). By distilling information from multiple
climate variables which affect vegetation typology, climatic classifications can provide
a framework for understanding natural resource systems (Elguindi et al., 2013). By
focusing specifically on climate variables which govern river flows and crop growth,
derived climate classifications can also yield insight into the dependency of agricultural25

production on water resources. However, the bulk of recent literature (e.g. Chen and
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Chen, 2013; Mahlstein et al., 2013; Zhang and Yan, 2014) is global in scope. In this
study we focus for the first time on a specific classification for the Himalayan arc and
adjacent regions, concentrating on climate types relevant to the spatial domain and
time period of interest.

The Himalayan arc and Tibetan Plateau give rise to river systems which sustain5

populations numbering in the hundreds of millions (Immerzeel et al., 2010). To de-
rive climate classifications for this region we focus on climate variables which control
the hydrological regimes of catchments with mountainous headwaters, and hence with
substantial runoff contributions from snow and glacial melt, as well crop yields. Our
precise study area encompasses the Indus, Ganges and Brahmaputra basins and is10

shown in Fig. 1. The topographic contrast is stark between the high elevation areas of
the Himalayan arc and Tibetan plateau, and adjacent lowlands of the Indo-Gangetic
plains and deserts of Central Asia. Another striking feature of Fig. 1 is the extent of
area under irrigation in South Asia. The crops produced by these irrigated surfaces
are crucial to the food security of Pakistan, India, Bangladesh and beyond (de Frai-15

ture and Wichelns, 2010). Archer et al. (2010) point out that the semi-arid plains of
the Lower Indus had only marginal (rainfed) agricultural viability until the development
of irrigation infrastructure. Irrigation demand in the Lower Indus is supplied by run-off
from the Hindu Kush, Karakoram and Western Himalaya. Thus holistic understanding
of regional food security depends upon characterisation of the spatial as well as cli-20

matological differences of these hydrologically-connected sub-regions. Furthermore, it
is possible that these sub-regions will experience distinct trajectories of change in the
coming decades. Differential rates, or even signs, of change could substantially alter
the regional balance of irrigation water supply and demand. The climate classification
approach offers a framework within which to evaluate such water balance scenarios.25

Global meteorological reanalyses provide coherent syntheses of atmospheric states
including radiative and mass flux exchanges with the sea or land surface. In this paper
we compare the climatologies described for the study area from four reanalyses – JRA-
55 (Ebita et al., 2011), ERA-Interim (Dee et al., 2011), NASA MERRA (Rienecker et al.,
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2011) and NCEP CFSR (Saha et al., 2011) – which encompass the recent decades
rich in data from both ground-based and satellite-borne instruments. In assessing cli-
mate classifications derived from each reanalysis we are not only interested in how
the climatically-defined zones relate to water resource supply – mountainous head-
waters – and demand – irrigated plains – areas, but also in how the classifications5

derived from individual reanalyses relate to each other. These inter-comparisons es-
tablish a methodology for evaluating gridded datasets, including global and regional
climate simulations (Elguindi et al., 2014) as well as reanalyses. Comparisons can be
made not only between different models but also between different time periods (“time-
slices”), for either historical datasets (Belda et al., 2014; Chen and Chen, 2013) or10

simulations by climate models (Mahlstein et al., 2013). Temporal changes in derived
climate zones can be assessed in terms of both projected spatial changes (areal ex-
tent, elevation range, etc.) and of projected climatic changes (mean, annual range, etc.)
in the individual climate variables used to create the classification.

2 Data and methods15

2.1 Reanalysis datasets

Reanalyses are generally conducted by institutions responsible for meteorological fore-
casting and are undertaken in part to assess the performance forecasting models and
the data assimilation systems which support them (Uppala et al., 2005). The result-
ing coherent multi-decadal syntheses of climate conditions, however, are of substantial20

utility to a much broader spectrum of natural scientists. In this study we draw upon data
from four reanalyses produced by agencies from diverse geographic regions. Charac-
teristics of the reanalyses used in this study are provided in Table 1 and differ in both
spatial and temporal resolutions. Given the forecast-driven nature of reanalyses it is
common for time-steps to be organised in 6 h synoptic forecasting time windows. The25

NASA MERRA dataset is distinct in that the default time-step is hourly. In all cases daily
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means were calculated as the mean of the available sub-daily time-steps. Daily maxi-
mum and minimum were taken as the highest and lowest values respectively amongst
the sub-daily time-steps unless reported specifically as was the case for NCEP CFSR.
Diurnal range was calculated as maximum minus minimum. In order to make extracted
climatic values as comparable as possible, a common reference period, 1980 to 2009,5

available from each of the reanalyses, was selected for this study. However, compa-
rability of the results was still limited by differing spatial resolutions of the reanalyses
as both temperature and precipitation are greatly influenced by topography in moun-
tainous regions (Immerzeel et al., 2012). The fidelity with which each reanalysis re-
produces the topography of the study area is limited by its spatial resolution. For this10

reason, the JRA-55 – 1.25×1.25 decimal degree resolution – dataset is expected to
be handicapped compared to NCEP CFSR – 0.50×0.50 decimal degree resolution –
dataset. Nevertheless, other elements, including efficacy of data assimilation and real-
ism of land-surface process algorithms, are also expected to play substantial roles in
determining reanalysis skill.15

2.2 Selection of climate variables governing water resources and food security

The utility of a climate classification depends on the extent to which it reflects the
climatic constraints which govern physical processes of interest. If, for example, geo-
chemical processes such as pollutant mobilisation are an overwhelming concern, sen-
sitivity studies can be conducted to identify the key climatic factors involved (e.g. Nolan20

et al., 2008). In this paper the processes of interest are river flows from mountainous
headwaters and agricultural production, both of which depend upon inputs of mass
(precipitation) and energy (ambient temperature and incoming radiation). From a sim-
ulation standpoint, common approaches for modelling both meltwater generation from
seasonal snowpack and glaciers (Ragettli et al., 2013) as well as crop yields (Baigor-25

ria et al., 2007; Kar et al., 2014) require both air temperature and incoming radiation
in addition to precipitation as input data. Furthermore, moisture exchanges from the
land surface and atmosphere depend upon the latter’s vapour pressure deficit which
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is commonly expressed as relative humidity. Whilst these parameters can be observed
directly, the diurnal temperature range (DTR) also acts as an effective proxy for ambient
moisture conditions (Easterling et al., 1997).

In establishing the methodology used here, we favoured reanalysis variables with
the simplest relationship to commonly observed parameters at ground-based stations.5

Hence, Tavg (mean temperature) and DTR – both calculated from Tmax (maximum tem-
perature) and Tmin (minimum temperature) – along with precipitation were selected as
governing variables. An exception to this principle was made in selecting net incoming
shortwave radiation (SWnet) at the ground surface as a governing variable due to the
importance of seasonal snow-cover in the hydrological regimes of major Himalayan10

and Tibetan river systems. SWnet can be observed at standard manned meteorolog-
ical stations and automatic weather station (AWS) units if they are equipped with ra-
diometers, but is also indirectly available from remote sensing via albedo and cloud
climatology. It was largely for the linkage between SWnet and snow cover via albedo
that the former was selected as key variable. Specifically, land surfaces with full snow15

cover have a much higher albedo than “bare ground” and albedo evolves during snow-
pack accumulation and ablation when snow cover is partial. Albedo in turn modulates
net shortwave absorption from incoming solar radiation at the surface. Thus net short-
wave radiation can serve as a proxy for snow cover. The linkage between SWnet and
cloud cover is also useful as the latter is an indicator of large-scale weather system20

– mid-latitude westerly or tropical monsoon – influence. Cloud cover influences SWnet
by modulating the amount of incoming shortwave radiation reaching the surface. In
the absence of snow cover, suppression of SWnet in summer months over South Asia
is likely due to monsoonal activity while suppression in other months suggests mid-
latitude westerly disturbances. Table 2 lists the governing variables selected for this25

study, including the seasonal aggregates of interest, and summarises their physical
significance.

Prior to derivation of climate classifications, a comparison of the climatologies from
the individual reanalyses provide a context within which differences can be interpreted.
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To establish a common framework, the “native” resolution data from each reanalysis
was regridded (sub-divided) to a common 0.25×0.25 decimal degree spatial resolu-
tion. Ensemble means were calculated, by grid cell, from the simple averages of the
four reanalyses. There was no weighting applied from any metric of skill or confidence,
nor were any corrections made to account for differences between “native” orography5

and estimated surface elevation of the target common grid cell. This approach was
taken in the absence of detailed information on likely biases by the reanalyses in the
variables of interest. Once the ensemble mean had been calculated, normalised dif-
ferences, i.e. individual reanalysis value minus ensemble mean, were calculated to
facilitate comparisons of individual climatologies.10

In a study driven by interest in water resources and agricultural production, it is logi-
cal to initially focus on precipitation climatologies. Figure 2 shows the ensemble mean
reanalysis precipitation climatology and the individual contributions (as normalised dif-
ferences). In addition to annual totals, seasonal precipitation is differentiated between
a cold season, October to March known regionally as the “rabi”, and the monsoon15

season, April to September referred to as the “kharif”. The regional dominance of
monsoonal rainfall is striking when comparing the ensemble means of the seasonal
contributions to annual total precipitation; although for the Karakoram/Hindu Kush and
north-western Central Asian deserts the “rabi” precipitation outweighs monsoonal in-
puts. In comparing the climatologies of the individual reanalyses, the most prominent20

differences are located along the southern flank of the Himalayan arc and over the
Ganges–Brahmaputra Delta along with uplands along the India–Burma border region.
Broadly, JRA-55 is drier than the other reanalyses along the Nepal–Bhutan–China bor-
der but much wetter over the Terai, Assam, the lower Ganges basin and the Bay of Ben-
gal. NCEP CFSR has similar characteristics, with the exception of being drier over the25

Bay of Bengal. ERA-Interim and NASA MERRA show the opposite pattern, with ERA-
Interim being much wetter over the Nepal–Bhutan–China border region and NASA
MERRA being much drier over the Terai, Assam and Ganges–Brahmaputra Delta.
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While adequate moisture inputs from precipitation are prerequisite for both river flows
and agricultural production, the role of energy inputs in both the generation of meltwater
runoff, from snow and glacial ice, and in driving crop development, through photosyn-
thesis and transpiration, are also critical. Figure 3 shows the ensemble mean clima-
tologies and individual (normalised difference) contributions for Winter (December to5

February) SWnet, Spring (March to May) daily Tavg and Summer (June to August) DTR.
These temporal aggregates – Winter, Spring and Summer – were selected to identify
hydrological regimes – pluvial, nival (snowpack) or glacial – and growing seasons de-
pendent upon thermal conditions. As described in Table 2, all three seasonal values –
Winter, Spring, Summer – for each of these variables – Tavg, SWnet and DTR – were10

used as input to the classification procedure. Figure 3 shows a single seasonal exam-
ple of each variable to illustrate the information it contributes. Autumn (September to
November) seasonal aggregates were not used as they are very similar to Spring (mir-
ror image) in terms of magnitude and variability and thus not expected to substantially
increase information content available to the PCA.15

Figure 3 shows that Winter SWnet illustrates the influence of seasonal snow-cover
via albedo. As expected there is a generally latitudinal gradient, with decreasing SWnet
moving northward, although the latitudinal gradient is smaller than reductions in net
surface absorption in areas with seasonal snow cover. JRA-55 shows generally lower
SWnet values than the ensemble mean, particularly over south-western Pakistan and20

the Tibetan plateau. The former difference is likely due to greater reanalysis estimates
of cloud radiative effect (CRE) while over Tibet this might be either due to CRE or
to higher predicted albedo from greater assumed seasonal snow cover. In contrast
JRA-55 shows higher SWnet over the Pamir and sections of the high Karakoram and
Himalayan arc. This may be either due to assumed lesser seasonal snow-cover (de-25

creased albedo) or estimated clearer sky conditions (decreased CRE). Broadly speak-
ing ERA-Interim and NASA MERRA show the opposite contribution patterns to JRA-
55, and hence detailed examination of radiation modulating physical mechanisms, e.g.
clear vs. overcast conditions, full snow cover vs. bare ground, would likely reveal
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opposing tendencies. Between ERA-Interim and NASA MERRA, the former shows
broader and more pronounced decreases in SWnet continuously along the Himalayan
arc from Pamir through the east of Bhutan to the Sikkim. NCEP CFSR shows a mixed
pattern of SWnet, agreeing with JRA-55 north of approximately 30◦ N latitude and more
closely corresponding to ERA-Interim and NASA MERRA south of this line.5

The ensemble mean climatology of Spring daily Tavg displays the expected influence
of elevation, with sub-freezing temperatures found roughly above 3000 m a.s.l. Like
SWnet, Tavg through the freezing isotherm provides a spatial indication of areas with
likely snow cover. More generally, Tavg quantifies the available energy to drive melt-
ing of snow and ice as well as plant development. Although NASA MERRA is notably10

warmer than the other three reanalyses over the Indo-Gangetic plains, the largest dis-
crepancies are along Himalayan arc as well as at the transition from the Taklimakan
desert to the Tibetan Plateau. JRA-55 and NCEP CFSR are generally colder than the
mean along the Himalayan arc but warmer along the northern Tibetan fringe. ERA-
Interim is strongly warmer along the Himalayan arc but much cooler over the southern15

Taklimakan. NASA MERRA has more mixed contributions with relatively limited areas
showing substantial departures from the ensemble mean.

Summer DTR is not a direct indicator of energy input to the hydro-climatological sys-
tem and biosphere. It does, however, provide a measure of the amplitude of energy
variation throughout the diurnal cycle as well as providing a proxy for relative humidity20

(vapour pressure deficit) and cloud cover. Examination of the ensemble mean Sum-
mer DTR climatology clearly illustrates the influence of both cloud cover and humidity.
Regionally Summer DTR is lowest over the Arabian Sea and Bay of Bengal and high-
est over the western Central Asian deserts. Suppression of Summer DTR is clearly
evident by comparing the ensemble mean Summer DTR in Fig. 3 to the ensemble25

mean monsoonal precipitation accumulations in Fig. 2. The influence of diurnal dis-
cretisation (sub-daily time-step) on individual reanalysis DTR climatologies is evident
in Fig. 3. NASA MERRA, with an hourly time-step, has much larger DTR values over
land than the ensemble mean, although lower DTR values than the mean over the
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Arabian Sea and Bay of Bengal. MERRA’s hourly time-step allows better representa-
tion of the full amplitude of the DTR, while the 6 h time-steps of the other reanalyses
“flatten” or dampen estimated diurnal variations. NCEP CFSR has the lowest DTR val-
ues, with particularly small DTR estimates over the Central Asian deserts and Tibetan
Plateau. ERA-Interim has broadly, if moderately, lower DTR values than the mean ex-5

cept over the Central Asian deserts as well as the Arabian Sea and Bay of Bengal.
JRA-55 is similar to ERA-Interim in DTR estimates albeit spatially more variable and
closer to the ensemble mean.

In summary, the substantial differences, illustrated in Figs. 2 and 3, in input vari-
able climatologies between the individual reanalyses can be attributed to differences in10

spatial resolution and sub-diurnal discretisation. Reanalyses will also differ in the data
assimilation systems and data analysis and forecasting models they incorporate, an
exploration of which is beyond the scope of this study. Spatial resolution will have the
most pronounced influence in areas with steep topographic gradients and in interface
zones between land and sea. Sub-diurnal time-step influence will be limited to absolute15

accuracy of DTR. While both spatial resolution and sub-diurnal time-step influence ab-
solute accuracy and hence the direct comparability of a reanalysis to other datasets, its
internal coherence, i.e. relative spatial and temporal variability, may still be substantial.
This coherence can be tested through the climate classification process. Where good
ground-based observations exist and can be translated meaningfully to the grid cell20

resolution in the reanalyses, bias assessment could be performed. This would provide
insight into which dataset more accurately represents regional conditions but would be
very challenging and time consuming due to data paucity and inconsistencies. This in
fact highlights one of the major benefits of the climate classification procedure: objec-
tive delineation of the regional domain should enable optimisation of the use of limited25

ground data by defining “areas of relevance” within which the magnitude and distribu-
tion of bias can be meaningfully summarised.
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2.3 Method for climate classification

The climate classification methodology used in this study directly transfers the method
developed by Blenkinsop et al. (2008) for the European FOOTPRINT project albeit
with the set of variables described in Sect. 2.2 rather than those identified for FOOT-
PRINT (Nolan et al., 2008). Blenkinsop et al. (2008) applied a three-step approach to5

climate zoning: (i) identification of key climatic variables, (ii) principal components anal-
ysis (PCA) and (iii) k means cluster analysis. The decision to use the PCA and k means
approach, which classifies the spatial domain based on relative differences, rather than
to apply a classification based on absolute thresholds, e.g. Köppen–Trewartha (Belda
et al., 2014), was made due to the expectation that the spatial aggregation (large grid10

cells) within the reanalyses would introduce inevitable biases. These biases could be
further exacerbated by the formulation of data assimilation and forecasting algorithms
adopted by each reanalysis. Thus it seemed more reasonable to apply a relative differ-
entiation rather than an absolute, fixed standard.

As explained by Blenkinsop et al. (2008), PCA is a necessary step in the climate15

classification process in order to reduce the dimensionality of the input variables which
are expected to be substantially correlated as a set. Prior to PCA all input variables
were standardised (subtraction of spatial mean and division by spatial standard devia-
tion). Standardisation was performed so that the unit-dependent absolute values of the
individual variables would not distort their weighting within the PCA process. PCA was20

performed using the “mlab” module of matplotlib (Hunter, 2007) executed in a Python
environment. Input and output operations of reanalysis data stored as GeoTiffs were
handled using the RasterIO Python module (Holderness, 2011).

The results of the PCA for each reanalysis are summarised in Table 3. A decision
was made to retain principal components (PCs) which accounted for at least 5 % of the25

total variance in the input dataset. Table 3 indicates that ERA-Interim and NCEP CFSR
each had 4 PCs which met this criterion while JRA-55 and NASA MERRA had 5 PCs.
Details on the first 3 PCs, which together account for between 81 and 85 % of the total
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variance, for each reanalysis are provided in Table 3, while Fig. 4 shows these PCs
graphically. The first PC for all four reanalyses was primarily composed of variables
related to energy inputs (daily mean temperature, net shortwave radiation), although
JRA-55, ERA-Interim and NASA MERRA all had substantial negative contributions
from Summer DTR. The first PC accounted for between 36 % and 46 % of the total5

variance depending on the reanalysis chosen. As can be seen in Fig. 4, the differences
between the reanalyses in spatial distribution of PC1 within the domain can be largely
accounted for by the respective differences in spatial resolution. Even without allowing
for the spatial resolution, differences in the consistency in PC1 between reanalyses is
striking.10

For the second and third PCs, contributions were very similar between three of the
reanalyses (Table 3). For ERA-Interim, NASA MERRA and NCEP CFSR, PC2 was
dominated by precipitation inputs from all seasons while negative contributions from
Summer energy inputs were also present. In these reanalyses PC3 was dominated by
DTR, particularly Winter and Spring. For JRA-55, PC2 was dominated by Winter and15

Spring DTR with a negative contribution from cold season (“rabi”) precipitation. JRA-
55 PC3 was dominated by annual total and monsoonal (“kharif”) precipitation as well
as Winter DTR. Despite the differences in composition, i.e. loadings from input vari-
ables, spatial variability within the domain for PC2 from JRA-55 is visually very similar
to PC2 from the other three reanalyses. In PC2, for JRA-55 the Arabian Sea shares20

the same sign as the Himalayan arc and Ganges–Brahmaputra Delta while in the other
three reanalyses the Arabian Sea has the same sign as the Lower Indus Basin and
Central Asian deserts. There are more substantial differences between reanalyses in
PC3. In JRA-55 the signs of Central Asian deserts and Tibetan plateau are reversed
compared to the patterns found in PC3 in the other three reanalyses. For all reanaly-25

ses PC2 accounted for between 19 and 32 % of total variance while PC3 accounted
for between 16 and 19 %. Overall the spatial patterns in Fig. 4 are physically plausible,
especially PC1 (mean annual temperature/energy input) and PC2 (annual total precipi-
tation) in the three similar reanalyses (excluding JRA-55). Spatial patterns in PC3 (cold
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season/“rabi” DTR) are also physically plausible, although visually are less intuitive as
diurnal temperature cycles are substantial even in high elevation areas (Karakoram, Hi-
malaya, Tibetan Plateau) in these seasons. They are of lesser amplitude, however, than
those experienced currently in the Indo-Gangetic plains and Central Asian deserts.

K means cluster analysis was also performed using matplotlib (Hunter, 2007) and5

RasterIO (Holderness, 2011) within a Python environment. As suggested by Blenk-
insop et al. (2008), standardised grid cell latitude and longitude were added to the
retained principal components as input to the clustering process. Because k means
cluster analysis presupposes the number of distinct (climate) classes rather than de-
termining the number groupings (zones) based on a numerical measure of “likeness”10

a range of cluster numbers was tested for each reanalysis. The results are presented
in the following section, but the our interpretation was that the study domain could be
aptly described by eight sub-regional climate zones with increases in cluster numbers
leading to sub-divisions of these zones. The issue of spatial discretisation of steep
topographic gradients, and hence temperature and precipitation gradients, in the tran-15

sition zone between the (southern flank of the) Himalayan arc and Indo-Gangetic plains
does, however, raise a legitimate caveat to this generalisation.

3 Results

3.1 Description of emergent regional climate zones and subdivisions

Figure 5 shows the results of k means clustering for each reanalysis for eight, twelve20

and sixteen clusters. Similar sub-divisions of the eight sub-regional climate zones tend
to emerge in all the reanalyses as cluster numbers increase although sub-divisions
first emerge dependent upon spatial discretisation and climatological differences – il-
lustrated in Figs. 2 and 3 – of each reanalysis.

The general characteristics of the eight emergent sub-regional climate zones are25

described Table 4 along with the fraction of the spatial domain each covers in each
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reanalysis (for the 8-cluster case). With the exception of the Himalayan arc zone which
was not identified by both JRA-55 and NASA-MERRA when the number of clusters
was limited to eight, there is substantial agreement not only on the broad geographic
locations of the eight zones but on their spatial extent within the domain as well. There
is arguably some blurring in the definition of the “Lower Indus Basin” (semi-arid plains),5

which regionally could be seen as a transitional zone between the “Central Asian
deserts” and the “Gangetic Plains” (sub-humid plains), although the latter could itself be
seen as a transitional zone between the Lower Indus and the “Ganges–Brahmaputra
Delta” (humid plains).

3.2 Comparison of climatologies of emergent sub-regional climate zones10

The spatial mean and ranges (minimum and maximum) have been calculated for the
period monthly means of the four input variables from each reanalysis. The annual cy-
cles of precipitation and DTR are shown in Fig. 6. The annual cycles of daily mean tem-
perature and net shortwave radiation are shown in Fig. 7. Placement of sub-regional
zones within these figures are deliberate in their relationship to geographical location15

and large-scale circulation influences. The most northerly zones are in the upper figure
panels and the southerly at the bottom. Zones with greater westerly weather system
influence are in the left hand column, while greater monsoonal influence zones are to
the right. Results shown in both figures are referred to in the discussion throughout this
Section.20

3.2.1 Precipitation climatologies of emergent sub-regional climate zones

Precipitation is a core element in differentiating the eight emergent sub-regional cli-
mate zones within the study domain. The Ganges–Brahmaputra Delta (humid plains)
has by far the highest precipitation of the sub-regional zones followed by the Gangetic
plains (sub-humid plains) and the Himalayan arc. Precipitation in each of these zones25

is dominated by monsoonal rainfall although the Himalayan arc receives moderate
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precipitation from westerly weather systems in late winter (February) and Spring. The
Karakoram/Hindu Kush zone is the next wettest with dominant inputs from “rabi” west-
erly weather systems and limited Summer rainfall. The Tibetan Plateau has a similar
seasonal distribution of precipitation to the Himalayan arc but with lower monthly to-
tals. The Lower Indus Basin and Central Asian deserts are the driest zones. Spread in5

spatial means between reanalyses is substantial for all climate zones and appears
roughly proportional to precipitation amount, i.e. the largest spread is found in the
wettest months and in the wettest zone (Ganges–Brahmaputra Delta).

3.2.2 DTR climatologies of emergent sub-regional climate zones

As explained in Sect. 2.2, ensemble spread in DTR climatologies can be substan-10

tially attributed to issues of sub-diurnal discretisation. For all climate zones except
the Arabian Sea and Bay of Bengal, the reanalysis with an hourly time-step (NASA
MERRA) has the largest DTR values. Despite similar sub-diurnal discretisation, NCEP
CFSR has consistently lower DTR values across all climate zones than ERA-Interim
and JRA-55 which tend to agree closely with one another. Despite this considerable15

ensemble spread in absolute values, the “shape” of annual DTR cycles within cli-
mate zones is consistent between reanalyses, i.e. standardised values are very similar.
Zones with substantial monsoonal influence – Ganges–Brahmaputra Delta, Gangetic
plains and Himalayan arc – have annual DTR minima in Summer. In contrast, drier and
more westerly-dominated sub-regional zones – Central Asian deserts, Tibetan plateau,20

Karakoram/Hindu Kush and Lower Indus Basin – have annual DTR minima in Win-
ter, although the Lower Indus has sufficient monsoonal influence for a minor minimum
(limited DTR suppression) in Summer. The Arabian Sea and Bay of Bengal have the
smallest DTR values both in absolute terms (annual mean) and amplitude of annual
cycle.25
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3.2.3 Daily mean temperature climatologies of emergent sub-regional climate
zones

Based on the PCA results presented in Sect. 2.3, differences in energy inputs account
for the largest fraction of variance within the input data. Differences in annual cycles of
daily Tavg provide clear differences between the emergent sub-regional climate zones.5

The Arabian Sea and Bay of Bengal have year-round moderately warm temperatures
with minimal spread in both ensemble mean and in spatial spread within individual re-
analyses. The Ganges–Brahmaputra delta has similar monthly spatial mean values to
the Arabian Sea but with incrementally larger ensemble spread and much greater spa-
tial spread. The spatial spread is attributed to the topographic diversity within the zone,10

stretching from coastal areas to the front ranges of the Himalaya. The Lower Indus
Basin and Gangetic plains have quite similar annual cycles of daily mean temperature.
Both have mild cold seasons (“rabi”) and hot summers with large spatial spreads in all
months. The ensemble spread is incrementally larger in all months for the Lower Indus
than for the Gangetic plains. The remaining four zones – Central Asian deserts, Tibetan15

Plateau, Karakoram/Hindu Kush and Himalayan arc – are alike in several months of the
annual cycle, with mean temperatures below freezing. Ensemble and spatial spreads
are greater in the Central Asian deserts and Karakoram/Hindu Kush than in the Tibetan
Plateau, which is consistently the coolest zone. For the Himalayan arc, ERA-Interim
and NCEP CFSR agree closely for both the spatial means and the considerable spatial20

spreads of this zone.

3.2.4 Net shortwave radiation climatologies of emergent sub-regional climate
zones

Net shortwave radiation at the surface is, understandably, the least differentiated of the
input variables. Of interest is the varying degrees of SWnet suppression in different sea-25

sons. In cold months shortwave suppression is due to increased albedo from seasonal
snow cover and to a lesser extent to CRE from thick cloud cover. This is evident in
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the Tibetan Plateau and Karakoram/Hindu Kush where the annual minima is well be-
low 100 watts m−2. Sub-100 watts m−2 annual minima in the Central Asian deserts are
more surprising and may in part be due to airborne dust particles. Higher Winter SWnet
for the Himalayan arc, comparable to the Lower Indus, than the Karakoram/Hindu Kush
may be attributable to the lower latitude and lesser seasonal snow cover of the more5

easterly mountain range. Summer SWnet suppression will be caused by large CRE
linked to monsoonal activity. This is particularly visible in the Ganges–Brahmaputra
Delta and Gangetic plains and still noticeable in the Himalayan arc and Arabian Sea.
The effect is present though barely perceptible in the Lower Indus Basin.

3.2.5 Commonalities and distinctions in the climatologies of emergent10

sub-regional climate zones

The layout of Figs. 6 and 7 is intended to facilitate comparison of adjacent climate
zones. Climate zones are represented within Figs. 6 and 7 moving from north to south
by moving from top to bottom panels. Given the latitudinal influence on temperature,
zones with similar temperature regimes, e.g. Lower Indus Basin and Gangetic plains,15

are laterally adjacent. In contrast, the dependence of precipitation on atmospheric cir-
culation can be examined by comparing these adjacent panels. Thus the Lower Indus
Basin, with limited monsoonal rainfall is found by the clustering process to be distinct
from the Gangetic plains. Similarly the Tibetan plateau is distinguished from the Central
Asian deserts not only by cooler temperatures but also by greater monsoonal precipita-20

tion. The Karakoram/Hindu Kush and Himalayan arc have similar temperature regimes
but the seasonality and magnitude of annual precipitation, driven by the differing cir-
culation influences, clearly separates them. Even without knowledge of land or sea
presence, the Ganges–Brahmaputra Delta zone is distinct from the Arabian Sea zone
by both precipitation and DTR.25
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4 Discussion

4.1 Insights from climate classifications for water resources and food security
in South Asia

The PCA and k means clustering approach applied to climate classification for the
Himalayan arc and adjacent regions, focusing on water resources and food security,5

has found a consensus among four global meteorological reanalyses to identify eight
emergent sub-regional climate zones. These zones are physically plausible and cor-
respond to broadly recognized units of vegetation typology and land surface charac-
teristics in South and Central Asia. Of these eight zones, one is open water (Arabian
Sea and Bay of Bengal) while two – Central Asian deserts and Tibetan Plateau –10

are sparsely populated. The three plains zones – Lower Indus Basin, Gangetic plains
and Ganges–Brahmaputra Delta – are densely populated and projected to experience
rapid demographic growth in the coming decades (Archer et al., 2010; Immerzeel and
Bierkens, 2012). In addition to direct precipitation assessed in the climate classification
these plains regions receive river flows from upstream areas: the Karakoram/Hindu15

Kush is upstream of the Lower Indus Basin while the Himalayan arc is upstream of the
Gangetic plains and Ganges–Brahmaputra Delta. The precipitation climatologies of in-
dividual climate zones presented in Fig. 6 confirm that the Lower Indus Basin receives
substantially less direct precipitation than the other two plains climate zones. In a first-
order analysis, irrigated areas in the Lower Indus, shown in Fig. 1, are thus much more20

dependent upon upstream flows than their Gangetic counterparts.
This general assessment does not however take into account the question of intra-

annual (inter-seasonal) water transfers, as the annual cycle of Ganges basin tributary
river flows will closely follow the annual precipitation cycle. Thus, in the absence of im-
pounding reservoirs or substantial groundwater recharge, only limited water volumes25

would be available to supplement irrigation in the dry “rabi” season. This study also
does not take into account inter-annual variability, as the climate classifications here
draw solely upon period means (1980 to 2009). A further limitation of this assessment
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is that at the “parcel scale” of rainfed agriculture the convective precipitation in mon-
soonal weather systems has very large spatial variability (Khan et al., 2014). Thus
while farmers in the irrigated Lower Indus Basin rely upon upstream flows for the bulk
of crop moisture requirements, farmers in the Gangetic plains may find supplementary
irrigation critical to compensate spatially and temporally acute precipitation deficits and5

ensure crop yields.
Looking forward, climate classifications of the type applied in this study help to frame

the assessment of the impact of changing climate conditions on future water resources,
crop production and food security. By understanding the roles of sub-regional climate
zones as water resource supply (headwaters) and demand (irrigated plains) areas, the10

net result of changes in water availability (precipitation change) and potential evapo-
transpiration (air temperature, shortwave radiation and relative humidity change) can
be more skilfully evaluated. Changes, calculated between time-slices of dynamically-
downscaled climate model simulations, in both the spatial extent and climatological
statistics of water resource supply and demand zones in and of themselves provide15

information on the trajectory of water availability, i.e. unit yield or deficit multiplied by
surface area. Additionally, delineation of sub-regional climate zones provides an objec-
tive basis for definition of study boundaries of more sophisticated nested downscaling
investigations. Accurate delineation is important when computational requirements are
high, for example when high-resolution sensitivity experiments are required to constrain20

the uncertainties in future supply and demand scenarios.

4.2 Utility of climate classification for assessment of gridded datasets

The ensemble reanalysis input climatologies and normalised difference contributions
shown in Figs. 2 and 3 illustrate the initial steps in comparative assessment of grid-
ded data sets for bias characterisation and validation. Further logical steps would draw25

upon the climate zones derived through the PCA and k means clustering approach
to sub-divide the spatial domain in order to focus and organise the use of limited
in-situ data (ground-based, point observations) to characterise sub-regional dataset
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performance. The use of in-situ data to provide “ground truthing” and relate large scale
datasets to local conditions will remain crucial for the foreseeable future because grid-
ded datasets of a global nature, be they reanalyses, spatially interpolated from local ob-
servations or derived from satellite imagery will inevitably have intrinsic biases. These
biases are a function of spatial and temporal resolution of the source observations as5

well as the physical nature of those observations. In-situ data, be they from national
monitoring networks or international databases such as the Global Historical Climatol-
ogy Network (Lawrimore et al., 2011), could be grouped by the derived climate zones
and in this way structure the analysis of statistics of “grid-cell vs. station” biases. In this
way individual gridded datasets could be assessed to determine in which sub-regional10

climate zones they perform well or poorly. This approach also permits comparative eval-
uation of different gridded datasets to determine which most accurately reproduces the
climatology of a given climate zone.

This proposed methodology for bias assessment is dependent, however, upon the
availability of station data which are representative of climatic conditions in absolute15

terms at the grid-scale level. This constraint could be prohibitive for mountainous areas,
such as the Karakoram/Hindu Kush, where meteorological stations are often located
in valley bottoms, substantially below the mean elevations of overlying data source
grid cells. One such example is the Upper Indus Basin (Gilgit-Baltistan administrative
district of Pakistan) where Archer (2003, 2004) and Archer and Fowler (2004, 2008)20

found climate observations at manned meteorological stations of the Pakistan Meteo-
rological Department located in valley settlements to correlate strongly with variability
in hydrological conditions, although runoff volume fluctuations did not equate directly
to precipitation anomalies. Thus in mountainous or other highly spatially variable do-
mains “transfer functions” (scaling relationships) representing climate parameter vari-25

ation with topography may still be necessary to compare in-situ point observations to
grid cell spatial means in absolute terms.

These challenges for relating point-based observations to gridded data in fact point
toward the utility of inter-comparison of spatial datasets. The climate classification
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approach provides a supplementary dimension in which to compare gridded datasets.
To illustrate this, the sub-regional climate zones delineated from the four reanalyses
could be considered as reference or benchmark values for evaluation of climate model
control period outputs. On-going work is exploring the application of the climate classifi-
cation approach to time-slices within the Met Office Hadley Centre seventeen-member5

perturbed physics ensemble of 130 year transient future climate simulations (Collins
et al., 2011) dynamically downscaled to 0.22 decimal degrees for the South Asia do-
main (Bhaskaran et al., 2012). Climate classifications, using eight clusters, for the ini-
tial 30 years (1970 to 1999) of the simulation, considered as the “control climate”, are
shown for each of the ensemble members in Fig. 8. Visual comparison of Fig. 8 to10

Fig. 5 confirms that the broad patterns of the sub-regional climate zones found by
the reanalyses are replicated in the control climate time-slice of the climate model en-
semble. There are noteworthy differences, particularly over the Ganges–Brahmaputra
Delta, but the overall sub-regional groupings are unmistakeable. Table 5 provides the
distribution of the spatial domain among the sub-regional climate zones for each cli-15

mate model ensemble member. The ensemble mean and standard deviation are also
given in Table 5. These values are compared, in Table 6, to the equivalent values from
the reanalyses (from Table 4). The largest differences in fractional areas stem from an
eastern Himalayan climate zone in the model ensemble amalgamating area allocated
to the Ganges–Brahmaputra in the reanalyses as well as sections assigned to the Ti-20

betan Plateau in the reanalyses being assigned to the Karakoram Hindu Kush in the
model ensemble. Future work will investigate differences in climatology between re-
analysis zones (as presented in Sect. 3.2 and Figs. 6 and 7) and the model ensemble
zones. This analysis will then be extended to compare climate classifications between
time-slices of the model ensemble.25

In summary, the climate classification approach presented here has substantial po-
tential both for use in assessment of water resources and food security issues as well
as for the characterisation of skill and bias of gridded datasets for reproducing sub-
regional climatologies. This relative, or internal-difference, classification approach was
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preferred over a methodology based on fixed, absolute thresholds due to the nature of
the gridded datasets whose spatial discretisation and likely intrinsic biases would dis-
tort the results of an absolutist method. The natural resource assessment application
of this approach is timely as increasing pressures on water resources and cropland
appear inevitable in South Asia for the medium term due to demographic trends and5

evolving consumption patterns. The growing availability of gridded datasets increases
the likelihood of their use to address resource management and climatic sensitivity
issues. In order to use these datasets skilfully it is necessary to first rigorously char-
acterise their performance and biases. Thus the climate classification approach pre-
sented here is doubly timely as it provides a framework to organise use of in-situ ob-10

servations to differentiate gridded dataset performance at the sub-regional level and to
carry out inter-comparison of gridded dataset performance for these sub-regions.

5 Conclusions

A three-step approach was used to derive climate classifications for the Himalayan
arc and adjacent plains from climate inputs from four global meteorological reanalyses15

covering the recent historical record (1980 to 2009). Input variables were selected for
this process with a focus on climatic drivers of water resources and agricultural pro-
duction. Knowledge of the climatic factors governing behaviour of hydrological regimes
with substantial contributions from seasonal snowpack and glaciers as well as con-
trolling crop growth led to selection of precipitation amount, daily mean temperature,20

net shortwave radiation at the surface and DTR as input variables. Three seasonal ag-
gregations were chosen for each input variable. Annual, “rabi” (October to March) and
“kharif” (April to September) totals were used for precipitation to differentiate the influ-
ences of westerly mid-latitude and monsoonal sub-tropical weather systems. For the
remaining variables temporal aggregates for Winter (December to February), Spring25

(March to May) and Summer (June to August) were selected to identify hydrological
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regimes – pluvial, nival (snowpack) or glacial – and growing seasons dependent upon
thermal conditions.

Principal Components Analysis (PCA) was applied to the spatially standardised tem-
poral aggregates of the input variables. Comparison of PCA results from the four re-
analyses show that in all cases the first principal component was dominated by energy5

inputs while the second and third were dominated by precipitation and DTR. Principal
components accounting for a minimum of 5 % of total input variance, supplemented
with standardised latitude and longitude, were used as inputs to a k means cluster
analysis. Progressive increases in cluster numbers were tested for each reanalysis in
order to assess the evolution of emergent climate zones. Results of the k means anal-10

ysis were interpreted to show that the study domain could be adequately described by
eight sub-regional climate classes while further increases in cluster numbers resulted
in sub-divisions of these macro-zones. Spatial statistics for each sub-regional climate
zone from the ensemble of reanalyses revealed consistent, distinct climatologies in the
annual cycles of the input variables.15

The capacity of the climate classifications to provide insight into water resources and
food security issues at a regional scale were discussed. This capacity is linked to the
objective delineation of water resource supply and demand zones. Analysis of changes
in both the spatial and climatic characteristics of the zones over time provides a frame-
work for evaluation of water availability for crop production. The climate classifications20

also support evaluation of gridded datasets themselves. The climate zones provide
an objective method for grouping available ground-based observations to quantify and
summarise gridded dataset bias. They also serve as a metric with which to compare
climatologies of gridded datasets. This was illustrated by comparing the climate classi-
fications of the ensemble of reanalyses to the “control period” of a dynamically down-25

scaled perturbed physics climate model ensemble. Strong commonalities between the
benchmark (reanalysis) and predictive (RCM) datasets were evident while limited di-
vergences were clearly identified. Future work will extend the methodology here to
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evaluate the regional water resources and food security implications of changes pro-
jected by available RCM experiments covering South Asia and the Himalayan arc.
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Table 1. Reanalysis datasets utilised for comparative climate classification.

Reanalysis Producer Time period covered Spatial Diurnal discretisation
resolution
(degrees)

JRA-55 JRA 1958 to (near) present 1.25×1.25 6 h synoptic forecast/
analysis periods

ERA-Interim ECMWF 1979 to (near) present 0.75×0.75 6 h synoptic forecast/
analysis periods

CFSR NCEP 1979 to 2009 (later 0.50×0.50 6 h synoptic forecast/
extended) analysis periods

MERRA NASA 1979 to (near) present 0.67×0.50 hourly
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Table 2. Variables used for Himalayan region climate classification.

Variable Season Physical importance

Precipitation Annual Humid vs. arid climates
Total
ONDJFM Westerly (extra-tropical) weather system climate influence
(“rabi”)
AMJJAS Monsoonal weather system climate influence
(“kharif”)

Tavg DJF Indicator of precipitation state (solid vs. liquid) and
MAM available energy to drive hydrological processes (meltwater
JJA generation) and crop growth (transpiration); as such indicator

of hydrological regime (pluvial, nival or glacial)

DTR DJF (inverse) Indicator of moisture conditions, i.e. relative humidity
MAM and cloud cover, as both suppress DTR; as such proxy for cloud
JJA cover further informs regarding circulation influences

SWnet at DJF Indicator of land surface state (snow covered or bare) and
surface MAM available energy to drive hydrological processes (meltwater

JJA generation) and crop growth (transpiration); as such indicator
of hydrological regime (pluvial, nival or glacial)
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Table 3. Comparison of results of Principal Components Analysis.

Gridded data source PC1 PC2 PC3

JRA-55 Explained 0.459 0.194 0.162
Variance

5 PCs> 0.05 Loading JJA DTR −0.359 ONDJFM Precip −0.440 AnnTot Precip −0.419
DJF Tavg 0.380 DJF DTR 0.408 AMJJAS PrecipTot −0.416

DJF SWnet 0.384 MAM DTR 0.509 DJF DTR −0.461

ERA-Interim Explained 0.364 0.317 0.167
Variance

4 PCs> 0.05 Loading JJA DTR −0.353 AnnTot Precip 0.460 DJF DTR 0.622
DJF Tavg 0.443 AMJJAS Precip 0.440 MAM DTR 0.621
MAM Tavg 0.404 ONDJFM Precip 0.407
DJF SWnet 0.402 MAM SWnet −0.353
JJA SWnet −0.371

NASA MERRA Explained 0.416 0.214 0.185
Variance

5 PCs> 0.05 Loading JJA DTR −0.378 AnnTot Precip 0.491 DJF DTR −0.631
DJF Tavg 0.404 AMMJAS Precip 0.439 MAM DTR −0.635
MAM Tavg0.375 ONDJFM Precip 0.479

DJF SWnet 0.388 JJA Tavg −0.395

NCEP CFSR Explained 0.377 0.275 0.181
Variance

5 PCs> 0.05 Loading DJF Tavg 0.451 AnnTot Precip 0.459 DJF DTR −0.478
MAM Tavg 0.429 AMJJAS Precip 0.440 MAM DTR −0.645
JJA Tavg 0.363 ONDJFM Precip 0.367 JJA DTR −0.462

DJF SWnet 0.424 JJA SWnet −0.429
MAM SWnet 0.382

nb: Rows labelled “Explained Variance” indicate fraction of total input variance accounted for by the Principal Component (PC). Rows
labelled “loading” indicate input variables whose (coefficient) contribution to the PC is > 0.35. Loading coefficients are shown with
their signs to differentiate between variables with opposing contributions.
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Table 4. Description of primary Himalayan region climate zones (8 clusters).

Regional Climate Characteristics Fraction of domain covered
climate zone type JRA-55 ERA- NASA NCEP
name/area Interim MERRA CFSR

Arabian Sea Sub- Year-round warm 0.069 0.077 0.066 0.080
and Bay tropical temperatures; Minimal
of Bengal ocean DTR; limited monsoonal

precipitation

Central Mid- Cold winter; hot summer; 0.199a 0.150 0.168 0.101
Asian latitude Minimal annual
deserts desert precipitation

Tibetan High Cold winter; mild 0.229 0.207 0.266a 0.227
Plateau elevation summer; limited

desert monsoonal precipitation

Himalayan Sub- Cold winter; mild b 0.061 b 0.039
arc tropical summer; Substantial

high monsoonal precipitation
mountains weather

Karakoram/ Mid- Cold winter; mild 0.058 0.064 0.050 0.064
Hindu Kush latitude summer; Substantial

high precipitation from
mountains westerly weather systems

(Winter and Spring)

Lower Semi-arid Mild winter (cold season); 0.133 0.152 0.179 0.194
Indus plains hot summer; limited
Basin monsoonal precipitation

Gangetic Sub- Mild winter (cold season); 0.217 0.192 0.163 0.222
Plains humid hot summer; substantial

plains monsoonal precipitation

Ganges– Humid Mild winter (cold season); 0.090 0.093 0.104 0.069
Brahmaputra plains warm summer; intense
Delta monsoonal precipitation

a: Combination of two climate zones in this reanalysis.
b: Not identified by this reanalysis.
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Table 5. Variability of primary Himalayan region climate zones (8 clusters) area in the Hadley
Centre downscaled perturbed physics ensemble RQUMP for South Asia.

Ensemble
member
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D
el

ta

T
ib
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P
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rqump00 0.062 0.152 0.236 0.169 0.113 0.092 0 0.171
rqump01 0.075 0.15 0.227 0.184 0.104 0.083 0 0.173
rqump02 0.074 0.15 0.251 0.160 0.102 0.080 0 0.180
rqump03 0.074 0.153 0.231 0.173 0.114 0.091 0 0.160
rqump04 0.071 0.145 0.193 0.168 0.135 0.026 0.083 0.175
rqump05 0.064 0.149 0.179 0.157 0.127 0.039 0.093 0.187
rqump06 0.061 0.154 0.216 0.167 0.131 0.076 0 0.192
rqump07 0.068 0.15 0.196 0.154 0.126 0.027 0.086 0.190
rqump08 0.062 0.156 0.209 0.153 0.131 0.098 0 0.188
rqump09 0.062 0.168 0.208 0.178 0.120 0.092 0 0.169
rqump10 0.075 0.270 0.267 0 0.130 0.121 0 0.134
rqump11 0.061 0.152 0.202 0.171 0.136 0.092 0 0.183
rqump12 0.062 0.238 0.175 0.115 0 0.128 0 0.280
rqump13 0.091 0.261 0.300 0 0.171 0.035 0.138 0
rqump14 0.063 0.264 0.263 0 0.100 0.099 0 0.209
rqump15 0.062 0.148 0.202 0.160 0.132 0.025 0.085 0.183
rqump16 0.069 0.240 0.190 0.115 0 0.101 0 0.282

mean 0.068 0.182 0.220 0.130 0.110 0.076 0.028 0.179
standard
deviation

0.008 0.048 0.034 0.065 0.044 0.033 0.047 0.059
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Table 6. Comparison of RQUMP perturbed physics ensemble climate model sub-regional cli-
mate zone distributions to those from the reanalysis ensemble.
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Ensemble Climate 0.068 0.182 0.220 0.130 0.110 0.076 0.028 0.179
means model

Reanalyses 0.073 0.154 0.198 0.164 0.059 0.050 0.089 0.232
Difference −0.005 0.028 0.022 −0.034 0.051 0.026 −0.061 −0.053

Ensemble Climate 0.008 0.048 0.034 0.065 0.044 0.033 0.047 0.059
standard model
deviations Reanalyses 0.006 0.041 0.027 0.027 0.006 0.015 0.014 0.024

Difference 0.002 0.007 0.007 0.038 0.038 0.018 0.033 0.035
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Figure 1. Geographic context of the – Himalayan arc and adjacent plains – study area including
elevation and areas with > 33 % under irrigation (hashed).
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Figure 2. Ensemble precipitation climatology and normalised comparison of individual contri-
butions from reanalyses used in this study.
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Figure 3. Ensemble energy input (temperature and radiation) climatology and normalised com-
parison of individual contributions from reanalyses used in this study.
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Figure 4. Comparison of the first three principal components from each of the reanalyses used
in this study.
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Figure 5. Comparison of climate classifications resulting from the use of 8, 12 and 16 clusters
(k) on principal components from the individual reanalyses. Large units in the legend refer to
zones for the k = 8 case.

1138

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/5/1101/2014/esdd-5-1101-2014-print.pdf
http://www.earth-syst-dynam-discuss.net/5/1101/2014/esdd-5-1101-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
5, 1101–1141, 2014

Exploring objective
climate classification

N. Forsythe et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 6. Ensemble spatial statistics for annual cycles of precipitation (left) and DTR (right) by
climate zone (8 clusters).
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Figure 7. Ensemble spatial statistics for annual cycles of Tavg and SWnet by climate zone (8
clusters).
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Figure 8. Comparison of climate classifications resulting from the use of 8 clusters on principal
components of the control period (1970 to 1999) from the individual members of the Hadley
Centre RQUMP perturbed physics ensemble downscaled over South Asia.
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